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Abstract: Inasmuch as LiDAR is becoming an increasingly prominent tool for forest inventory, it is timely to develop a
framework to understand the statistical properties of LiDAR-based estimates. A model-assisted approach to estimation and
inference when using LiDAR as a tool to inventory aboveground forest biomass is presented. An empirical example is
also presented, yet the article’s focus is largely methodological. The sampling plan in the example is viewed as a two-
stage design, with slightly different primary sampling units between the profiling and scanning laser surveys. A regression
estimator is presented that uses biomass data from the Norwegian National Forest Inventory as the response variable and
laser-derived variables as covariates. A major thrust of this article is the presentation of the variance of the estimators of
total biomass and biomass per hectare as well as variance estimators.

Résumé : Dans la mesure où le LiDAR devient un outil de plus en plus important pour l’inventaire forestier, il est oppor-
tun d’élaborer un cadre pour comprendre les propriétés statistiques des estimations basées sur le LiDAR. Nous présentons
une approche basée sur la modélisation pour faire des estimations et tirer des conclusions lorsque le lidar est utilisé comme
outil d’inventaire de la biomasse forestière aérienne. L’article porte avant tout sur la méthodologie bien qu’un exemple
empirique soit présenté. Dans l’exemple, le plan d’échantillonnage est considéré comme un dispositif à deux étapes, avec
des unités primaires d’échantillonnage légèrement différentes pour les relevés par profilage et par balayage laser. L’esti-
mateur de régression qui est présenté utilise les données de la biomasse de l’inventaire forestier national de la Norvège
comme variable de réponse et les variables dérivées du lidar comme covariables. L’idée maı̂tresse de cet article est la pré-
sentation de la variance des estimateurs de la biomasse totale et de la biomasse par hectare, ainsi que les estimateurs de la
variance.

[Traduit par la Rédaction]

Introduction

Both profiling and scanning lasers have been proposed for
the estimation of aboveground forest biomass. Sampling de-
signs for laser-aided inventory have varied among applica-
tions, yet commonly, they involve two or more levels of
sampling and the use of laser pulse data as a source of aux-
iliary information. In this article, we consider a specific de-
sign that was implemented in Hedmark County, Norway, for
the purpose, inter alia, of comparing the utility of profiling
and scanning laser for biomass estimation. In particular, we
present the estimators developed for this survey as well as
estimators of their variance in a model-assisted design-based
framework. In a companion paper (Ståhl et al. 2011), a
model-based approach is considered. For an appreciation of

the distinctions between inference based on the sampling de-
sign versus on a model, see Gregoire (1998).

The development here draws heavily from Särndal et al.
(1992) and from Särndal and Hidiroglou (1989) yet delves
into new areas not covered by these or other authors: the sys-
tematic selection of primary and secondary sampling units.

Materials and methods

The Hedmark County survey
A large area survey of Hedmark County, Norway, was

conducted for the purpose of linking airborne laser measure-
ments of vegetation with field data from the Norwegian Na-
tional Forest Inventory (NFI) to estimate aboveground forest
biomass (AGB). Both profiling and scanning lasers were
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used. A two-way cross-classification (by administrative units
(AUs) and by cover type) of the county was conducted with
the aim of producing estimates of individual classes as well
as the entire county.

The survey may be viewed as a two-stage sampling de-
sign with subsequent model-assisted regression estimation
of AGB. Hedmark County is located in southeastern Norway
bordering Sweden (Fig. 1). Its land area is approximately
27 390 km2. It comprises four AUs, and a separate estimate
of AGB for each AU was sought.

Hedmark County was partitioned by cover into C = 8
classes based on existing land use maps and Landsat satellite
images. The provision for separate estimates of AGB by
cover class also was desired. The eight cover classes (see

Table 1) included four productive forest classes: (1) high-,
(2) medium-, and (3) low-productivity forests and (4) young
forest. The remaining four classes were either nonproductive
forest or nonforest classes: (5) nonproductive forest, (6)
mountain areas >850 m above sea level, (7) developed
areas, e.g., residential areas and infrastructure, and (8) open
water.

Predictions of AGB for a network of field plots were
available from the NFI of Norway. In Hedmark County,
there are 1483 permanent NFI sample plots, measured in
2005–2007, that had been established on a 3 km � 3 km
grid almost everywhere. The radius (diameter) of each circu-
lar sample plot is 8.92 m (17.84 m), and therefore, its area is
250 m2. The measurement protocol stipulates that 20% of
the permanent plots be remeasured every year. Design-un-
biased estimation of tree frequency and aggregate basal area
is possible with the NFI, which is a probability sample of
forest resources. However, the reliance of AGB on previ-
ously fitted models precludes strict design unbiasedness of
AGB estimates. Typically, the design-based properties of
such estimates are made conditionally on the model-based
predictions of individual tree biomass. The work reported
here to derive the variance of AGB estimates abides by this
conventional practice.

On each sample plot, the diameter at breast height (DBH)
of each tree with DBH > 5 cm was measured by calliper.
The heights of 10 sample trees per plot, on average, were
also measured. Biomass for each tree taller than 1.3 m was
predicted with a previously fitted allometric model presented
by Marklund (1988), which uses diameter and height as pre-
dictor variables. Trees taller than 1.3 m but with DBH <
5 cm were counted and their heights were estimated by
means of models presented by Tomter (1998). The spatial
coordinates of each plot center were determined with a
measurement tolerance of <1 m using differential Global Po-
sitioning Systems and Global Navigation Satellite System
measurements according to the procedures suggested by
Næsset (2001).

Both profiling (portable airborne laser system (PALS);
Nelson et al. 2003) and scanning laser (airborne laser scan-
ning (ALS)) height data were collected in 2006 from fixed-
wing aircrafts. The flight lines were oriented east–west and
followed the NFI grid (see Fig. 1).

For both PALS and ALS, the laser measurements and the
metrics derived from them are the source of the auxiliary in-
formation, denoted by x, that is linked via regression to
AGB observed on the NFI ground plots. Auxiliary informa-
tion is available for each primary sampling unit (PSU) of the
two-stage sample. Therefore, the design accords with Case
C of Särndal et al. (1992, section 8.2) wherein ‘‘the auxiliary
vector value xk is available for all elements in selected PSUs
only...’’, as opposed to all PSUs in the entire population.

Laser profiling
With airborne laser systems, a short-duration pulse of

light is emitted from the instrument and reflected back
from the target on the ground, such as trees or humanmade
objects or from the terrain. The size of the footprint of the
laser beam as it hits the ground might be on the order of,
say, 0.1–1 m. The travel time is converted to distance and
by extracting the height of the terrain surface, the relative

Fig. 1. Norwegian National Forest Inventory plot locations in Hed-
mark County. The shading delineates the four administrative units
of the county. The 53 horizontal lines are the airborne laser scan-
ning flight lines (spacing of 6 km). The profiling laser was flown at
3 km intervals.
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height of the trees and tree canopies can be computed. With
a profiling system such as PALS, data are collected for con-
secutive footprints in a narrow strip beneath the platform. In
the current study, PALS height data were collected on mp =
105 parallel flight lines. The flight lines were spaced 3 km
apart and collectively spanned 8309 km. Of the 1483 NFI
plots measured in 2005–2007 and made available to this
study, 916 plots were overflown within 17.8 m of plot cen-
ter. In subsequent processing of these PALS data, each
flight line was partitioned into a succession of 17.8 m seg-
ments.

Laser measurements of canopy height and crown density
were extracted from the 17.8 m segment closest to the cen-
ter of each NFI ground plot. These height and density data
were then related to per-unit-area AGB, as measured in the
NFI field plots, by fitting linear regression models for all
productive forest cover classes combined, as well as a sepa-
rate regression for each of the four nonproductive forest
classes. These models were used subsequently to predict
AGB per hectare for each 17.8 m segment.

The general PALS model for biomass per hectare, y’, was

½1� y0 ¼ mðx; dÞ þ e

where the m(x; d) was a linear mean function parameterized
by the vector d. In eq. 1, x represents one or more PALS
measurements of canopy height or summary statistics (e.g.,
quadratic mean canopy height) from a 17.8 m segment. The
set of covariates varied somewhat among the regressions
fitted for the different cover classes. After having fitted the
regression, a prediction of biomass per hectare was obtained
as by 0 ¼ mðx;bdÞ. Letting y = y’/40 and by ¼ by 0=40, to convert
from biomass per hectare to biomass per 250 m2 plot, the
discrepancy between biomass observed on the NFI plot and
predicted biomass per plot is eðyÞ ¼ y� by.

Viewing the PALS survey in Hedmark County as a two-
stage sampling design, the flight line is the PSU, whereas
each segment is viewed as a secondary sampling unit
(SSU). Each SSU was designated as belonging to a single
cover class. The AU into which an SSU was assigned de-

pended solely on its geographic location relative to the
boundaries of the AU.

Laser scanning
With airborne laser scanning, pulses are distributed con-

tinuously along the flight line within a wider swath and not
just along a narrow strip as with PALS. The swath width
can typically be 500 m or more. For ALS data acquisition,
ma = 53 parallel east–west flight lines, spaced at 6 km inter-
vals, were established. These overflew a total of 705 NFI
plots (see Fig. 1). Collectively, the ALS flight lines spanned
4570 km and covered an area of 2297 km2, or 8.4% of Hed-
mark County.

The average pulse density for the scanner was 2.8 m–2. In
total, about 6.5 billion pulses were acquired.

Similar to the processing of the PALS height data, the
ALS height data were related to AGB from the NFI plots.
In this effort, logarithmic regression models with additive
errors were fitted by cover class to the AGB per plot. For
the high-productivity forest class, the following model was
fitted for biomass on 250 m2:

½2� lnðyÞ ¼ mðx; bÞ þ e

where m(x; b) is nonlinear in the parameters, b, and where x
may include topographic variables as well as canopy density
and canopy height metrics based on the ALS altimetry. The
choice of covariates varied among models; no model was
fitted for the open-water cover class (8) because we lacked
plot data for that class. The same model for each particular
cover class was used in all AUs.

After having fitted the regression, a prediction of biomass
per plot is obtained as by ¼ exp½mðx; bbÞ�. As in the PALS
case, the discrepancy between observed and predicted bio-
mass per plot is eðyÞ ¼ y� by.

The data from each scanning flight line were parsed so
that only those pulses within a 500 m swath around the cen-
terline of the scan were retained. Each swath was partitioned
into regular 250 m2 grid cells. For the ALS application, the

Table 1. Cover classes by area percentage in Hedmark County and the corre-
sponding number of Norwegian National Forest Inventory (NFI) plots in each
class.

Area (%) No. of NFI plots

Productive forest
High 5 92
Medium 13 243
Low 16 306
Young 17 334

All productive forest 51 975

Nonproductive forest and nonforest
Nonproductive forest 11 167
Mountain areas 28 182
Developed areas 5 82
Open water 5 77

All nonproductive forest and nonforest 49 508

Gregoire et al. 85
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500 m swath constitutes the PSU, whereas the 250 m2 grid
cells within a swath are the SSUs.

Each cell was designated as belonging to a single cover
class. As with PALS, the assignment of an ALS cell into an
AU was based on only its location within the AU.

Notation

Population parameters of interest
We use t to denote the total AGB in Hedmark County.

The average AGB per hectare in Hedmark County is

½3� l ¼ tA�1

where A represents the horizontal land area of Hedmark
County expressed in hectares.

Using u to index the U AUs in Hedmark County, the total
biomass in the uth unit is tu, biomass per hectare is lu, and
its land area is Au, where u = 1, ..., U. Likewise, using c to
index the C cover classes, the total biomass in the cth class
is tc, biomass per hectare is lc, and the land area classified
into the cth class is Ac, where c = 1, ..., C.

For each possible combination of AU and cover class, let
tuc denote total biomass, luc denote biomass per hectare, and
Auc denote the corresponding land area, where uc = 1, ...,
UC and UC = U � C.

Total biomass, as well as biomass per hectare, in Hed-
mark County aggregates over the various subdivisions in
the usual fashion:

t ¼
XU
u¼1

tu ¼
XC
c¼1

tc ¼
XUC
uc¼1

tuc

l ¼ A�1
XU
u¼1

Aulu ¼ A�1
XC
c¼1

Aclc ¼ A�1
XUC
uc¼1

Aucluc

Inclusion probabilities
Let the probability with which the pth PSU flight line is

selected into the first-stage sample be denoted by pp. For
ALS, the systematic placement of 500 m wide swaths 6 km
apart implies that pp = 500/6000 = 1/12. This is approxi-
mately the same as ma/M, where M is the number of 500 m
wide swaths that could partition Hedmark County. For
PALS, we deduced the first-stage inclusion probability in

an analogous fashion to provide an approximate first-stage
inclusion probability pp = 1/214.

In the parlance of systematic sampling, the sampling in-
terval is Ia = 12 when intervals are measured in units of
500 m wide swaths for ALS, and for PALS, it is Ip = 214.

Let the pth PSU be partitioned into Np SSUs (250 m2 cells
for ALS and 17.8 m line segments for PALS). From these,
we presume that np are randomly selected into the second-
stage sample. These are the 250 m2 NFI plots. Conditioned
on having selected the pth PSU at the first stage, the inclu-
sion probability of including the NFI plot at the second
stage is approximately pNFI|p = np / Np. With this approxima-
tion, we are not introducing bias into the estimators of t and
l, which we shall present, by ignoring the systematic place-
ment of the NFI plots. By presuming a simple random sec-
ond stage of selection, we thereby can appeal to estimators
of the variance of the two-stage regression estimators of t

and l. The consequence of ignoring the systematic nature
of the second-stage selection is a likely overestimation of
variance (Gregoire and Valentine 2008, p. 55).

We ignore the complication that a PALS line segment
will not bisect an NFI plot. We assume that one effect of
this error of location will be a less precisely fitted regression
than otherwise would be obtained. Another, and potentially
more serious, consequence is that the precision of the
model-assisted regression estimator of AGB will be de-
graded quite seriously because of the possibly large residual
value resulting from misregistration.

We ignore, too, the complication that an ALS grid cell
and an NFI plot will not exactly coincide. We assume that
because their areas are identical, the discordance of the ac-
tual plot configuration with the presumed configuration will
have only minor consequences on estimation and inference.

First-stage sample size by AU
Let Mu < M be the number of 500 m wide swaths that

could partition the uth AU.
While mp and ma denote the overall number of PSUs by

PALS and ALS, respectively, we need to separately indicate
the number of PSUs that wholly or partly intersect each AU.
For this purpose, let mpu denote the number of PALS flight
lines that intersect the uth AU and let mau denote the num-
ber of ALS swaths that do likewise. We emphasize that the
subset of PSUs in an AU does not alter the first-stage inclu-
sion probability, pp, of each PSU.

Two-stage estimation of biomass by AU and cover class

In the two-stage setup, an estimator of tuc from PALS and from ALS share a similar construction. For PALS:

½4� btP
uc ¼

Xmpu

p¼1

btP
puc

pp

� Ip

Xmpu

p¼1

btP
puc

where btPpuc is the estimator of t based on the SSU line segments in the pth PSU flight line. For ALS:

½5� btA
uc ¼

Xmau

p¼1

btA
puc

pp

� Ia

Xmau

p¼1

btA
puc
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where btApuc is the estimator of t based on the 250 m2 SSU grid cells in the pth PSU swath.
Because of the great similarity of eq. 4 to eq. 5, in the sequel, we shall denote both by btuc, with the understanding thatbtuc ¼ btPuc when referring to the estimator based on PALS and btuc ¼ btAuc when referring to the estimator based on ALS. Like-

wise, we shall use btpuc, with the understanding that btpuc ¼ btPpuc when referring to the estimator based on PALS and btpuc ¼ btAuc
when referring to the estimator based on ALS.

In this more generic notation:

btuc � IXmu
p¼1

btpuc
When evaluating btuc with PALS data, mu = mpu and I = Ip. Likewise, when evaluating btuc with ALS data, mu = mau and I = Ia.

Both eqs. 4 and 5 rely on the fitted regression that relates biomass per hectare on a PALS line segment or on a 250 m2

plot, respectively, to laser metrics, namely eq. 1 for PALS and eq. 2 for ALS.
Let bypk be the prediction of biomass on 250 m2 from the fitted regression corresponding to the kth SSU flight line segment

(PALS) or swath (ALS) in the pth PSU. Not all of these will be in the uth AU and cth cover class, yet only the subset of
SSUs in the uth AU and cth cover class are used in the estimator btpuc. Therefore, let fpucðyÞ be the following subset of thebypk predictions on the pth PSU:

fpucðyÞ ¼ fbypkjkth SSU of pth PSU is in uth AU and cth cover classg

Let fpuc2ðyÞ be the subset of fpucðyÞ that contains only those bypk from SSUs that passed over an NFI plot, i.e., those SSUs
that were selected into the second stage of sampling on the pth PSU.

The bypk predictions may be obtained from separate regressions by cover class or AU or from a regression common to two
or more cover classes and AUs. In practice, it would matter whether separate or pooled regressions were used for prediction,
but for the purpose of deriving the statistical properties of the estimators of AGB, there is no need to distinguish between the
two cases.

The regression estimator of total biomass in the ucth class on the pth PSU is

½6� btpuc ¼
X

fpucðyÞ
bypk þ

X
fpuc2ðyÞ

ypk � bypk

pNFIjp
�
X

fpucðyÞ
bypk þ

Np

np

X
fpuc2ðyÞ

epkðyÞ

where epkðyÞ ¼ ypk � bypk is the residual from the fitted regression. Notice that first term of eq. 6 is a sum over a larger set of
SSUs than the sum in the second term. As Särndal and Hidiroglou (1989) articulated well, the second term provides a Hor-
vitz–Thompson-like correction for the design-based bias of the first term.

When the pth PSU lacks any SSUs in the ucth class, i.e., when the set fpucðyÞ is null, then blpuc ¼ 0, by definition, as per
Särndal and Hidiroglou (1989, p. 267). In the nonnull case, let npuc ¼ jfpucðyÞj denote its size. Similarly, when fpuc2ðyÞ ¼ �,
the correction term in eq. 6 is zero. Otherwise, let npuc2 ¼ jfpuc2ðyÞj denote its size. With eq. 6, the total biomass may be

Table 2. Norwegian National Forest Inventory plot frequency by administrative unit and
cover class.

Administrative unit
1 2 3 4 All

Productive forest
High 50 17 24 1 92
Medium 81 23 113 26 243
Low 39 34 147 86 306
Young 22 30 140 42 334

All productive forest 292 104 424 155 975

Nonproductive forest and nonforest
Nonproductive forest 17 12 71 67 167
Mountain areas 0 3 59 120 182
Developed areas 32 31 11 8 82
Open water 21 20 26 10 77

All nonproductive forest and nonforest 70 66 167 105 508

Gregoire et al. 87
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estimated for any combination of AU and cover class that is of interest by means of eq. 4 or 5, as appropriate.
Estimates of biomass per hectare scale down directly as

½7� bluc ¼ btuc=Auc

The bias and precision of these estimators will depend crucially on the size of the second-stage sample in the ucth class. For
example, there were 48 NFI plots situated in the medium-productivity forest class in the third AU, yet only six plots are
located in the high-productivity forest class in the first AU (see Table 2). The estimated biomass for the former will be con-
siderably more precise and less design-biased (due to the regression estimator) than the estimated biomass for the latter. We
turn next to an expression of the variance based on chapter 8 in Särndal et al. (1992).

The approximate variance of btuc, namely VðbtucÞ, is

½8� VðbtucÞ � VIðbtucÞ þ VIIðbtucÞ

as in eq. 8.9.24 in Särndal et al. (1992). The first term on the right is the component of variance of btuc due to variation in its
value among all possible samples of PSUs for the design employed in the sampling. The second term is the corresponding
component due to variation among samples of SSUs within their respective PSUs.

Särndal et al. (1992) provided expressions for VIðbtucÞ in their eqs. 4.3.10 and 8.3.2, which in the notation of this paper is

½9� VIðbtucÞ ¼
XMu

p¼1

XMu

p0¼1

ðppp0 � pppp0Þ
tpuc

pp

� �
tp0uc

pp0

� �

Using r to index the I possible systematic samples of PSUs, and using truc to denote the total biomass in the ucth class of the
rth first-stage sample, we get from eq. 3.4.4 of Särndal et al. (1992) that eq. 9 can be reexpressed as

½10� VIðbtucÞ ¼ I
XI

r¼1

ðtr � t=IÞ2

where I = Ia or I = Ip, as appropriate. As is well known (Gregoire and Valentine 2008), the expression in eq. 10 does not admit of a
design-unbiased estimator even in the simple situation of single-stage element sampling. We are unaware of anyone who has consid-
ered the case that we are presently considering, namely systematic sampling of PSUs in a two-stage design.

It seems more fruitful, then, to presume a first-stage design that does permit unbiased estimation of VIðbtucÞ in eq. 8, with
the consequent realization that it is usually a conservative approximation to the variance of the estimator of tuc. The universal
default design is simple random sampling without replacement, which leads to

½11� VIðbtucÞ ¼
XMu

p¼1

XMu

p0¼1

ðppp0 � pppp0Þ
tpuc

pp

� �
tp0uc

pp0

� �
� M2 1

m
� 1

M

� �
s2
tuc

where

½12� s2
tuc ¼ ðMu � 1Þ�1

XMu

p¼1

ðtpuc � tuc=MuÞ2

and where m = ma or m = mp, as appropriate.
Also in eq. 8:

½13� VIIðbtucÞ ¼
XMu

p¼1

1

pp

X X
k2fpc2ðyÞ

ðpkk0jp � pkjppk0jpÞ
epk

pkjp

� �
epk0
pk0jp

� �24 35 � M

m

XMu

p¼1

N2
p

1

np

� 1

Np

� �
s2
epuc

which, as explained above, presumes simple random sampling without replacement at the second stage of selection. In eq. 13, e is
from eq. 1 or 2 for PALS and ALS, respectively, and

½14� s2
epuc ¼ ðnpuc2 � 1Þ�1

X
k2fpuc2ðyÞ

e2
pk

is the within-PSU variability of biomass among the regression errors for the SSUs that are in the ucth class.
To summarize so far:
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½15� VðbtucÞ � M2 1

m
� 1

M

� �
s2
tuc þ

M

m

XMu

p¼1

N2
p

1

np

� 1

Np

� �
s2
epuc

Therefore:

½16� VðblucÞ �
1

A2
uc

VðbtucÞ

An estimator of VðbtucÞ in eq. 15 is (Särndal et al. 1992, eq. 8.9.27)

½17� bV ðbtucÞ ¼ bV IðbtucÞ þ bV IIðbtucÞ
where

½18� bV IðbtucÞ ¼
Xmu

p¼1

Xmu

p0¼1

ppp0 � pppp0
ppp0

� � btpucp

pp

� � btp0ucp

pp0

� �
�
Xmu

p¼1

1� pp

p2
p

 !bV ypuc ¼ M2 1

m
� 1

M

� �
s2
t̂uc � m�1

u

Xmu

p¼1

bV ypuc

 !
where m = ma and mu = mau with ALS and m = mp and mu = mpu with PALS. In eq. 18:

½19� s2
t̂uc ¼ ðmu � 1Þ�1

Xmu

p¼1

ðbtpucp � btucpÞ2

½20� btpucp ¼
X

k2fpuc2ðyÞ

ypk

pkjp
� Np

np

X
k2fpuc2ðyÞ

ypk

½21� btucp ¼ m�1
u

Xmu

p¼1

btpucp

Also in eq. 18:

½22� bV ypuc ¼
X X

k; k 02fpuc2ðyÞ

pkk0jp � pkjppk0jp
pkk0jp

� �
ypk

pkjp

� �
ypk0
pk0jp

� �
¼ N2

p

1

np

� 1

Np

� �
s2

ypuc

where

½23� s2
ypuc ¼ ðnpuc2 � 1Þ�1

X
k2fpuc2ðyÞ

ðypk � ypÞ2

½24� yp ¼ n�1
puc2

X
k2fpuc2ðyÞ

ypk

Also in the variance estimator presented in eq. 17:

½25� bV IIðbtucÞ ¼
Xmu

p¼1

1

p2
p

X X
k;k 02fpuc2ðyÞ

pkk0jp � pkjppk0jp
pkk0jp

epkðyÞ
pkjp

� �
epk0ðyÞ
pk0jp

� �24 35 � M2

m2

Xmu

p¼1

N2
p

1

np

� 1

Np

� �
s2

epuc

where

½26� s2
epuc ¼ ðnpuc2 � 1Þ�1

X
k2fpuc2ðyÞ

½epkðyÞ � epðyÞ�2

½27� epðyÞ ¼ n�1
puc2

X
k2fpuc2ðyÞ

epkðyÞ

To summarize the variance estimator derived above:
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½28� bV ðbtucÞ � M2 1

m
� 1

M

� �
s2
t̂uc � m�1

u

Xmu

p¼1

N2
p

1

np

� 1

Np

� �
s2

ypuc

" #
þM2

m2

Xmu

p¼1

N2
p

1

np

� 1

Np

� �
s2

epuc

and hence:

½29� bV ðblucÞ �
1

A2
uc

bV ðbtucÞ

Estimation of biomass by cover class
Estimates of total biomass by uc classes may be added to derive marginal estimates for a particular cover class. For exam-

ple, to estimate the total biomass, tc, in the cth cover class:

½30� bt�c ¼XU

u¼1

btuc ¼
M

m

XU

u¼1

Xmu

p¼1

btpuc

However, the variance of bt�c is not the sum of the variances of the btuc, in contrast with results from stratified sampling (cf.
table 5.1 of Gregoire and Valentine 2008). The nonadditivity of the variances stems from the covariances of estimators in
different AUs.

As an alternative to bt�c , one could estimate the total biomass in the cth cover class as

½31� btc ¼
M

m

Xm

p¼1

btpc

in which

½32� btpc ¼
X

k2fpcðyÞ
bypk þ

X
k2fpc2ðyÞ

ypk � bypk

pNFIjp
¼

X
k2fpcðyÞ

bypk þ
Np

np

X
k2fpc2ðyÞ

epkðyÞ

where fpcðyÞ is the subset of npc predictions on the pth PSU:

fpcðyÞ ¼ fbypkjkth SSU of pth PSU is in the cth cover classg

and fpc2ðyÞ is the subset of fpcðyÞ that contains only those npc2 £ npc SSUs that were selected into the second stage of sam-
pling on the pth PSU.

The approximate variance of btc, namely VðbtcÞ, is

½33� VðbtcÞ � VIðbtcÞ þ VIIðbtcÞ
where

½34� VIðbt cÞ ¼
XM
p¼1

XM
p0¼1

ðppp0 � pppp0Þ
tpc

pp

� �
tp0c
pp0

� �
� M2 1

m
� 1

M

� �
s2
tc

where

½35� s2
tc ¼ ðM � 1Þ�1

XM
p¼1

ðtpc � tc=MÞ2

Also in eq. 33:

½36� VIIðbtcÞ ¼
XM
p¼1

1

pp

X X
k2fpuc2ðyÞ

ðpkk0jp � pkjppk0jpÞ
epk

pkjp

� �
ep0k
pk0jp

� �24 35 � M

m

XM
p¼1

N2
p

1

np

� 1

Np

� �
s2
epc

where
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½37� s2
epc ¼ ðnpc2 � 1Þ�1

X
k2fpc2ðyÞ

e2
pk

is the within-PSU variability of biomass among the regression errors for the SSUs that are in the cth class.
An estimator of Vðbt cÞ in eq. 33 is (Särndal et al. 1992, eq. 8.9.27)

½38� bV ðbtcÞ ¼ bV IðbtcÞ þ bV IIðbtcÞ
where

½39� bV IðbtcÞ ¼ M2 1

m
� 1

M

� �
s2
t̂c �

Xm

p¼1

bV ypc

 !
and

½40� bV IIðbtcÞ �
M2

m2

Xm

p¼1

N2
p

1

np

� 1

Np

� �
s2

epc

where

½41� s2
t̂c ¼ ðm� 1Þ�1

Xm

p¼1

ðbtpcp � btcpÞ2

½42� btpcp ¼
X

k2fpc2ðyÞ

ypk

pkjp
� Np

np

X
k2fpc2ðyÞ

ypk

½43� btcp ¼ m�1
Xm

p¼1

btpcp

½44� bV ypc ¼ N2
p

1

np

� 1

Np

� �
s2

ypc

½45� s2
ypc ¼ ðnpc2 � 1Þ�1

X
k2fpc2ðyÞ

ðypk � ypÞ2

½46� yp ¼ n�1
pc2

X
k2fpc2ðyÞ

ypk

½47� s2
epc ¼ ðnpc2 � 1Þ�1

X
k2fpc2ðyÞ

ðepkðyÞ � epðyÞÞ2

½48� epðyÞ ¼ n�1
pc2

X
k2fpc2ðyÞ

epkðyÞ

Collecting the above results together yields

½49� bV ðbtcÞ ¼ M2 1

m
� 1

M

� �
s2
t̂c � m�1

Xm

p¼1

N2
p

1

np

� 1

Np

� �
s2

ypc

" #
þM2

m2

Xm

p¼1

N2
p

1

np

� 1

Np

� �
s2

epc

For estimation of biomass per hectare, bV ðblcÞ ¼ bV ðbtcÞ=A2
c , as usual.

The above formulae would also apply if one were interested in the aggregation of two or more cover classes, e.g., the four
classes of productive forest shown in Fig. 1 and Table 2. To apply the above formulae, the indexing subscript ‘‘c’’ would
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implicitly represent all SSUs within any of the productive forest classes, and quantities such as s2t̂c in eq. 41 would have to be

computed once for the combined classes.

Estimation of biomass by AU

Estimates of total biomass may be added across cover classes to derive marginal estimates for a particular AU. For exam-
ple, one way to estimate the total biomass, tu, in the uth AU is

½50� bt�u ¼XC

c¼1

btuc

Here, too, the variance of bt�u is not the sum of the variances of the btuc. The nonadditivity of the variances again stems from
the covariances of estimators in different cover classes.

An alternative, direct estimator of tu is

½51� btu ¼
M

m

Xmu

p¼1

btpu

in which

½52� btpu ¼
X

k2fpuðyÞ
bypk þ

X
k2fpu2ðyÞ

ypk � bypk

pNFIjp
�

X
k2fpuðyÞ

bypk þ
Np

np

X
k2fpu2ðyÞ

epkðyÞ

where fpuðyÞ is the subset of npu predictions on the pth PSU:

fpuðyÞ ¼ fbypkjkth SSU of pth PSU is in the uth AUg

and fpu2ðyÞ is the subset of fpuðyÞ that contains only those npu2 £ npu SSUs that were selected into the second stage of sam-
pling on the pth PSU.

The approximate variance of btu, namely VðbtuÞ, is

½53� VðbtuÞ � M2 1

m
� 1

M

� �
s2
tu þ

M

m

XMu

p¼1

N2
p

1

np

� 1

Np

� �
s2
epu

where s2
tu and s2

epu are defined in Appendix A.
An estimator of VðbtuÞ is

½54� bV ðbtuÞ � M2 1

m
� 1

M

� �
s2
t̂u � m�1

Xmu

p¼1

N2
p

1

np

� 1

Np

� �
s2

ypu

" #
þM2

m2

Xmu

p¼1

N2
p

1

np

� 1

Np

� �
s2

epu

where s2t̂u, s
2
ypu, and s2epu are defined in Appendix A. For the per-hectare estimators, bV ðbluÞ ¼ bV ðbtuÞ=A2

u.

Results from Hedmark County

For all productive forest classes combined, the PALS
(59.5 t�ha–1) and ALS estimates (59.9 t�ha–1) were quite
close to the 64.0 t�ha–1 estimated solely from the 975 NFI
ground plots, as seen in Table 3. Indeed, for individual
classes of productive forests, the largest magnitude deviation
of PALS from ground NFI estimates was approximately –11
t�ha–1 in the medium-productivity forest class, and for ALS,
the largest deviation was approximately –7 t�ha–1 in both the
medium- and low-productivity forest classes. In comparison
with the ground NFI estimates, both PALS and ALS underes-
timated biomass for all but the young productive forest class.

For all classes of nonproductive forest and nonforest com-
bined, biomass estimates from PALS and ALS are quite
close to the ground NFI estimate of 9.0 t�ha–1. Judged in
terms of absolute deviation from the ground NFI estimate,
both PALS and ALS did least well in estimating the bio-
mass of the nonproductive forest class.

The differences between the ground NFI and PALS and
ALS estimates are more striking when assessed in terms of
the estimates of standard error. The NFI estimates are invar-
iably more precise, in part because they are based on more
plots than are used in the second stage of the PALS and
ALS sampling that was conducted in Hedmark. Even after
accounting for this by multiplying the ground NFI standard
error values in Table 3 by the factor (number of NFI plots/
number of LiDAR plots)0.5, the PALS and ALS estimated

92 Can. J. For. Res. Vol. 41, 2011

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
W

A
G

E
N

IN
G

E
N

 U
R

 o
n 

12
/0

3/
13

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



standard errors exceeded those of the NFI ground estimates,
sometimes quite substantially. Given the fundamental differ-
ence in the sampling designs, this adjustment based on num-
ber of plots can best be regarded as but a crude attempt to
put the methods on a comparable basis.

Normally, the precision of alternative estimators is com-
pared by computing the ratio of the variance of one with
the variance of the other. In our case, this is complicated by
the fact that the LiDAR sampling has a two-stage structure,
whereas the NFI does not. In both cases, a systematic sam-
pling design was used and a conservative estimate of stand-
ard error was employed. Yet we do not know whether the
overestimation of standard error was of comparable magni-
tude for the NFI and the two LiDAR designs.

Moreover, the accuracy of eq. 8, say, relies on large-sam-
ple asymptotic results that surely fail to hold for some com-
binations of cover class and AU in the LiDAR sampling of
Hedmark County.

In view of these caveats, the standard error results in Ta-
ble 3 are encouraging.

Discussion

The PALS flight lines and ALS swaths were flown at a
systematic spacing. To the extent that there is a north–south
gradient in AGB in Hedmark County, our treatment of the
first stage of sampling as a simple random sampling will re-
sult in an overestimation of the variance of these estimators
of AGB. Surely some cover classes will have a more pro-
nounced gradient than others, and the actual precision of
AGB estimation for these will be greater than our estimates
of variance will indicate. We could attempt to estimate the
variance among PSUs with successive differences or bal-
anced differences, but we have yet to do so.

We have also ignored the systematic location of NFI plots
that serve as our second-stage sample. Lacking an east–west

gradient to the AGB, the effect of their systematic location
may not be so pronounced.

As with poststratification generally, the sample sizes in
each AU and cover class are random. We implicitly have
conditioned on the realized sample sizes, which is a com-
monly accepted practice.

In addition, there was an adaptive element to the inclusion
of second-stage NFI plots with PALS: only those plots
whose centers were within 17.8 m of a PALS flight line
were included in the second-stage sample.

For cases where the NFI plot overlaps two or more ALS
cells, the prediction of biomass for an NFI plot following
ALS was made more accurate by basing the predictions on
the ALS metrics computed from within the plot borders
rather than the ALS cell that contains the major portion of
the NFI plot.

The design-based estimators of variance do not account
for the uncertainty, whether manifest as bias or variance, in
the allometric prediction of the biomass on the NFI ground
plot. Although this is a commonly accepted practice in for-
est inventory globally when estimating timber volume with
previously fitted models of bole volume, it is a practice that
both vitiates design unbiasedness of estimators of t and
likely results in an underestimation of its design-based var-
iance.

In two-stage sampling designs, the PSUs often are chosen
with probability proportional to some measure of size of the
PSU. The rationale for such unequal probability of first-
stage selection is an expected increase in the precision of es-
timation. We could, for example, employ importance sam-
pling to include PALS flight lines and ALS swath
centerlines with a probability density proportional to length.
We did not select PSUs with unequal probability in this
study, however. Moreover, we weight appropriately by area
when scaling down to an estimate of biomass per hectare in
the class, as seen in eq. 7. Nonetheless, there is an abiding

Table 3. Biomass estimates by cover class for Hedmark County.

PALS (t�ha–1) ALS (t�ha–1) Ground NFI (t�ha–1)

Mean SE nc Mean SE nc Mean SE nc

Productive forest
High 114.8 14.2 52 119.1 12.8 48 121.3 8.2 92
Medium 83.7 10.7 151 87.6 5.8 105 94.5 3.8 243
Low 42.6 6.6 173 39.8 5.7 141 46.6 2.3 306
Young 41.0 2.7 183 40.6 na 151 40.3 2.8 334

All productive forest 59.5 3.2 559 59.9 3.2 445 64.0 1.7 975

Nonproductive forest and nonforest
Nonproductive forest 27.3 3.5 103 27.2 na 83 22.5 2.1 167
Mountain areas 6.3 1.3 131 5.1 1.0 95 6.5 0.9 182
Developed areas 6.6 1.1 65 5.4 na 46 1.4 1.0 82
Open water 2.6 0.0 58 2.2 0.0 36 0.6 0.6 77

All nonproductive forest and nonforest 10.6 0.8 357 9.7 na 260 9.0 0.7 508

All cover classes 36.1 1.6 916 35.9 1.8 705 37.6 0.9 1483

Note: SE is the estimated standard error computed by the methods and formulae put forth in this article. Also, nc represents the number of Norwe-
gian National Forest Inventory (NFI) ground plots that were used to construct the estimates for the cover class. ‘‘na’’ denotes the occurrence of a
negative estimate of SE. For the water cover class, SE = 0.0 because aboveground biomass was absent on all NFI ground plots used in the LiDAR
calculations.
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feeling that longer flight lines ought to be given greater
weight than shorter ones, either by varying the probability
with which they are included into the sample or by some
form of weighting by length. We have consigned this ave-
nue of research for the future, perhaps with the help of sim-
ulation.

Despite these multiple deficiencies, we believe that the
work reported here has succeeded on a number of fronts.
We have articulated a design-based analysis for the estima-
tion of AGB that puts it on a sound footing within the field
of probability sampling. The design utilizes the height data
collected along the entire flight line or swath of a profiling
or scanning laser, respectively. Previous inventories with a
profiling laser have demonstrated how to utilize laser data
from the entire flight line to estimate biomass and forest
volume at a regional level (Delaware, USA) (Nelson et al.
2004). To date, such studies have been restricted to regions
smaller than 5000 km2 in area.

As far as scanning lasers are concerned, a major focus has
been on wall-to-wall inventory of forest stands for manage-
ment purposes and these methods have even become a pre-
ferred method for stand inventory, at least in Scandinavia
(Næsset 2007, 2009). Although such stand-based applica-
tions seem to perform well compared with conventional in-
ventories (e.g., Næsset 2002, 2004a, 2004b), the statistical
aspects have yet to be addressed in a rigorous manner. How-
ever, there is recent progress in this direction (Andersen and
Breidenbach 2007; Corona and Fattorini 2008). Applications
of scanning lasers within a sampling framework strike us as
an obvious choice to consider for regional applications
wherein wall-to-wall coverage would be prohibitively costly.
Parker and Evans (2004) and Stephens et al. (2008) used
scanning lasers in double-sampling applications to assess
volume and biomass, but only those laser data in a swath
that coincided with predefined plots were utilized in the es-
timation. Thus, to the best of our knowledge, the present
study is an initial demonstration of how the entire data set
of laser observations from a scanning laser can be used to
estimate the biomass in a fairly large region in a consistent
manner.

Because height measurements derived from airborne la-
sers are highly correlated with forest biomass, airborne la-
sers can provide timely and fairly accurate estimates over
large areas. We believe that such applications will be con-
sidered a viable alternative for monitoring and rapid update
of forest biomass and carbon stocks that shall be required to
comply with future climate treaties and other international
agreements. With the present work, we have offered a
means of quantifying the reliability of such estimates.
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Appendix A. Technical details

With regard to eq. 53:

½A1� s2
tu ¼ ðMu � 1Þ�1

XMu

p¼1

ðtpu � tu=MuÞ2

and

½A2� s2
epu ¼ ðnpu2 � 1Þ�1

X
k2fpu2ðyÞ

e2
pk

With regard to eq. 54:

½A3� s2
t̂u ¼ ðmau � 1Þ�1

Xmau

p¼1

ðbtpup � btupÞ2

½A4� btpup ¼
X

k2fpu2ðyÞ

ypk

pkjp
� Np

np

X
k2fpu2ðyÞ

ypk

½A5� btucp ¼ m�1
au

Xmau

p¼1

btpucp

½A6� s2
ypu ¼ ðnpu2 � 1Þ�1

X
k2fpu2ðyÞ

ðypk � ypÞ2

½A7� yp ¼ n�1
pu2

X
k2fpu2ðyÞ

ypk

½A8� s2
epu ¼ ðnpu2 � 1Þ�1

X
k2fpu2ðyÞ

ðepkðyÞ � epðyÞÞ2

½A9� epðyÞ ¼ n�1
pu2

X
k2fpu2ðyÞ

epkðyÞ

With regard to eq. 54:

½A10� s2
t̂u ¼ ðmpu � 1Þ�1

Xmpu

p¼1

ðbtpcp � bt cpÞ2

½A11� s2
ypu ¼ ðnpu2 � 1Þ�1

X
k2fpu2ðyÞ

ðypk � ypÞ2

½A12� s2
epu ¼ ðnpu2 � 1Þ�1

X
k2fpu2ðyÞ

ðepkðyÞ � epðyÞÞ2
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